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Abstract-This paper derives a complell dynamic stiffness function for a poroelastic layer and uses
this to ellamine the range of validity of solutions to Biot's dynamic poroelasticity equations when
either inertia or dissipation terms are neglected. It also ellamines the effects of certain inertia terms
and of surface boundary conditions on the solutions to these equations and presents a systematic
study of the effect of the dissipation term of Biot's theory on the system storage and loss moduli.

Biot's equations of poroclasticity are first phrased in terms of a single equation which governs
both the lluid and solid phase dilatational strains. A general solution to these equations is derived
in the Laplace domain and ellprcssions for the displacement and stress Laplace transforms in a
poroclastic layer are obtained. The constants of integration occurring in these solutions arc nellt
evaluated for the case of an impulsive load applied to one surface of the I:lyer. Cases of both a
permeablc ,lOd an impermeable 10,lded surf'K"C arc considered. The resulting' solutions for the
Laplace transform of the impulsive elicitation response ,Ire then transformed into frequency domain
comptell response functions. c,llIed dynamic stilTness functions. which char,lcteril-c the stiffness and
damping of the layer. Parametric studies arc then carried out employing these COll1plell frequency
response functions.

INTRODUCTION

Poroclaslic matcrials arc matcrials consisting of fluid-lillcd porous clastic solids. When the
matcrial is dcformcd. the volume: which contains the: fluid is changed. Both the: dynamic
stitTncss of the material and the energy loss associated with its deformation are atTected by
the llow of the viscous lluid within it. The mechanism of the energy dissipation of a
poroclaslic mate:rial ditTers from that of a conventional solid material because of the
inleraclions betwecn the fluid and the solid.

In a series ofpapc:rs. Biot (1941,1955. 1956a. b) and Biot and Willis (1957) introduced
a generallheory of linear poroclasticity. A number of investigators have used Biot's theory
to study consolidation problems or the response of poroelastic materials to uniformly
moving or harmonically time varying loads. Although mathematical difficulties in solving
thc completc equations have usually prompted neglect of either inertia terms or dissipation
terms, Biot's complctc dynamic equations have been used to study one-dimensional wave
propagation in semi-infinitc poroc1astic media by Biot (1956b), Chakravarti (1962), Garg
I!/ al. (1974) and Hong et al. (1988) among others.

Wijesinghe and Kingsbury (1979) and Kingsbury (1984) used Biot's equations to
examine the complex modulus, which is a measure of dynamic stiffness, of a poroe1astic
slab with a permeable upper surface. They investigated both the "quasi-static" case without
inertia terms and the "dynamic" (reduced dynamic) case without dissipation terms, thereby
allowing coupling terms involving either the dissipation or the inertia forces of the governing
equations to be neglected. Harmonic excitation was applied to the upper surface of the
poroelastic slab and the complex modulus for the poroelastic slab then determined. Sub
sequently Ok uno and Kingsbury (1989) extended the previous work to study energy dis
sipation and complex moduli in problems involving two dimensional tension compression
and bending deformation of poroelastic materials; again by determining response to har
monic excitation using Biot's quasi-static equations.
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The present paper studies the effects of inertia and dissipation coupling in Biar's
complete equations by comparing the calculated response of a porodastic laver based on
the complete governing equation with previously calculated n:sponse obtained on the basis
of equations which neglect either inertia or dissipation terms. It also uses the derived
solutions to examine the effects of the dissipation coefficient. the mass coupling parameter
and surface now effects on the predicted response of a poroelastic structure.

The response of the layer is first characterized in the Laplace domain by means of a
dynamic stiffness transfer function [K(s)] which is detlned as the ratio of the Laplace
Transform of the force excitation (/(5)] to that of the displacement response [0(5)). K(5) is
obtained by evaluating the constants of integration arising from the solution to Biot's full
dynamic equations for the case ofa slab with fixed lower surface and upper surl~lce subjected
to an impube loading.

Once the transfer function of the system is known. a frequency response function.
calkd the "complex dynamic stiffness" which characterizcs the steady state response in the
frequency domain. can be easily obtained by replacing the Laplace transform parameter 5

by iw where w is the frequency parameter.
The complex modulus. as derived by Wijesinghe and Kingsbury (1979). is a material

property which describes both the stiffness and damping in a material and can be obtained
from the complex dynamic stiffness at frequencies below the first natural frequency of the
structure.

Numerical results for the dimensionless complex dynamic stilfness for a poroelastic
slah with permeable and impermeable surfaces. arc illustrated and discussed. Comparisons
of the results ohtained from the present study with thc results of the earlier study by
Wijesinghe anti Kingshury (1979) for a poroclastk slah with a penneahle uppa surface arc
then made. Finally, the ellccts of the dissipation cocllicient. h. and the coupling mass
density. 111." on this dimensionless complex dynamic stiffncss function arc investigated.

TilE (jOVER:"I:-;(; 1:<)\1'\ I\O:"S

Biot's thcory of linear. isotropic porodastidty is employcd in this studv. This for
mulation assumes thc porous matcrial is cOl1structcd such that a solid material forms a
structure whkh contains statistically distributed small pores that arc tilled with a
Newtonian-viscous compressiblc !luid. The bulk material is assumcd to bc homogeneous
on a macroscopil: scalc. and thc pores arc assumcd to he interconnected. The solid skclclon
is takcn to rn: lincar clastic amI umkrgoing small dcformatiol1. The !luid now is assullled
to he of thc POi5cuillc type 50 that the !luid inertia and thc friction arc uniquely characterized
by the dcnsity. viscosity and thc pore dimensions.

The e4uations governing the deformation ofporoeklstic materials given by Biot (1956b)
can be written as

( I )

(1)

where N. A. Q and R arc material constants and the dissipation eoellicient h is defined as
h = JH/J~!K in which 11 is the fluid viscosity. (p is the porosity. K is Darcy's coellicient of
intrinsic permeability. u is the average solid displacement vector. and U is the average l1uid
displacement. The solid dilatation. e. and the fluid dilatation. 1:. arc defined in the usual
manner for small deformation. The quantities P 11' P I ~ and p~~ arc apparent mass densities.
which take into account the non-uniformity of the relative l1uid 110w through the pores.
When there is no relative motion between the fluid and the solid. p. the total mass density
of the Iluid-saturated material is given by: p = Pit + P~~ + 2J1t~· fI can he expressed in terms
of the mass density of solid. P" and the mass density of tluii:l Pr. as p = (I - 4»p, +
4)Jlf = fit + P: in which fli and p~ arc the mass densities per unit total volume of the solid
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and fluid. respectively. Biot showed that PI = PI I +P12 and P2 = PI2 +pzz. It is noted
that P II represents the total effective mass of the solid moving in the fluid. Pn repre
sents the total effective mass of that part of the fluid. and P IZ represents a mass coup
ling parameter between the fluid and the solid and these coefficients cannot be uniquely de
termined in terms of the fluid and solid phase densities. Biot (l956b) also shows that the
mass coefficients have the following properties:

The dynamic equilibrium equations of a poroelastic element in terms of skeleton and
fluid dilatational strains for poroelastic materials can be obtained by taking the divergence
of eqns (I) and (2) which yields

2Z a
VZ(Pe+Qe) = ct2 (Ptte+Plz&)+b at (e-&).

, a2 a
V-(Qe+Re) = at Z(PIZe+p22&) -b at (e-&).

(3)

(4)

where P = 2N+A. After rearrangements, eqns (3) and (4) can be written in the following
forms:

(
' iJ2 iJ) ( , i)z iJ )QV'-P ,--, +h (' = -RV·+J"z·' +h -..- r..

I. Dr iJt • ell" ('t

Substituting the e in eqn (6) in terms of (. into eqn (5), yields

where

{l, = PR_Qz,

{J z = (P+R+2Q)h,

(5)

(6)

(7)

Similarly, the elimination of e in eqns (5) and (6) yields the same differential equation for
e. It is noted that eqn (7) has been derived by Chakravarti (1962) for obtaining the dynamic
stress in a poroelastic infinite medium with a spherical cavity.

In this study, the systems considered are assumed to be deformed from the initially
undeformed position and all stresses arc zero at t = O.

INTEGRAL TRANSFORM SOLUTIONS

By taking the Laplace Transform of the differential equations of solid and fluid
dilatational strains, eqn (7), and using the initial conditions, bi-harmonic equations for the
solid and the fluid dilatational strains in the transform domain can be derived. Since the
differential equations for both dilatational strains are the same. the form of the general
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solutions for both are the same except for integration constants. Taking the Laplace
Transform with respect to time of eqns (6) and (7) and using the initial conditions, yields

(8)

(9)

where eand t are the Laplace Transforms of e and s. Equation (9) can be rewritten as a
product of two modified Helmholtz equations:

( 10)

where

and

\P, = (~ls+II!)!-411,s(p[)s+hp),

\('! = J'P 1 +~,.v+/i:,

\1/
4 = Pos+hp.

The solution for one-dimensional now and deformation in a layer with transverse co
ordinate: and thickness Iz is next obtained.

The skeleton dilatational strain e can be found by superposition of the solutions
obtained for each of the operators in eqn (10) in the form (e = e, +e:) with the solutions
for el and e2 obt.tined from

(v: -(iDe, = 0,

(v: -(ii)e: = O.

( II )

( 12)

In one-dimensional Cartesian co-ordinates, V: = iJ:!e::, and the solutions to cqns (II) and
(12) are combined to yic1d

The same procedure yic1ds the fluid dilatation:

A, and Hi (i = I, 2, 3,4) appearing in eqns (13) and (14) are constants.
The relationship between the coefficients A, and Hi can be found by substituting e, eqn

(13), and t, eqn (14), into eqn (8) which yields

Hi = e,A, (i = 1.2,3,4),

where
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(15)

(16)

The expressions for the dilatational strains eand €are substituted in the Laplace transformed
forms of eqns (I) and (1) to obtain the expressions for skeleton and fluid displacements (u
and U).

The solid phase displacement o(s) becomes

de di
p- +Q- p,~s~-bs

d= d=

de di ,
Qd= +R d= PnS"+hs

o( ~) == ------- --. IPI IS: +bs PL~S: -bs I
PI2S--bs P~2s-+bs

(17)

where

A = (1'0-,,+h/l)o52,

L\, == (/22.\'+h)I'-(/'12-,,-h)Q.

L\! == (1'!2S+h>Q-(PI2S-h)R.

The following result for lies) is oht.tined hy substituting the results for ", eqn (13), and i.
cqn (14), intocloln (17),

Next, using the stress definitions and stress-strain relationships of Biot and Willis (1957)
and the results of solid and fluid strains, the solid stress, ii::. and the fluid stress, ii, for the
one-dimensional problems become

+ (P+ QC3 )[A 3 exp (<5 2=) +A4 exp (-<5 2:)], (19)

a(.I') =Q,'+ Ri: = (Q + RCI)[A I cxp «(5,=) +A 2 exp (-£5 1=)]

+ (Q+ RC3)[A J cxp (£5 1=)+A 4 exp (-<5 1=»), (20)

DYNAMIC STIFFNESS TR/\NSFER FUNCTIONS

Next. the LHplace tr.msform of the system response to an impulsive excitation is
obtained to yield the system transfer function [K(s») which is the ratio of the Laplace
Transform of the force excitation, I(s), to that of the displacement response, O(s), under the
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assumption that all initial conditions are zero. If an excitation is an impulse. /(s) :::: I. then
the transfer function is exactly the reciprocal of the Laplace Transform of impulsive response.

Once K(s) is obtained from impulse analysis. the response to any excitation can. in
theory. be determined by formulating I(s) and then finding the inverse Laplace transform
of l(s)K(s). Since K(s) is the ratio of force excitation to displacement response. it is denoted
as the "dynamic stiffness transfer function".

Using the general solutions for the strain. stress and displacement transforms and
applying the suitable boundary conditions. the unknown integration coefficients. A,
(i:::: I. 2. 3.4). appearing in the general solutions for strains and displacements of the solid
and the fluid are determined. Transfer functions are then obtained for layers with permeable
and impermeable upper surfaces.

AN INFINITE POROELASTIC LAYER WITH A PERMEABLE UPPER SURFACE

In this case. the load applied on the upper surface is represented as r:: :::: PnJ(t) where
Po is the amplitude of the impulsive loading. Here. r:: :::: 0':: + 0' in which 0'::. eqn (19), is
the stress acting on the solid portions of the upper surface and 0', eqn (20). is the stress
acting on the fluid portions. Since the upper surface is permeable, the fluid pressure. p,
(p = -0'/4» is taken as zero. The lower surface of the poroelastic slab is fixed on a
rigid and impermeable plane. Accordingly. the solid displacement u must be zero and
the impermeable boundary condition implies a zero fluid pressure gradient on this face
«('1'/2= = 0).

Making usc of the stress-strain results. the Laplace transforms of the boundary con·
dition equations become

B:: I: _ II :::: 2Nc.-;:: + At;+ Qc.-; = Pc.; + Qi: :::: Po.

tTl: _ II :::: Qc.; + Ri: "" 0,

"1:- {j :::: O.

dB df l~
.:::: Q .. +R :::: O.

d=l: _ II d= d:
(21 )

Substitution of the expressions for e, eqn (13), iT, eqn (14), and ii cqn (18). into cqn (21)
givcs

a::I:~h:::: (P-QCdA t cxp«)lh)+(P+QC 1)A 1 cxp(-<)tll)

+ (P +QCJ)A J exp (15 1h) + (P+ QCJ)A ~ exp ( -(5 111) = pu.

ai:.h:::: (Q-RC,)A, exp (J,h)+(Q+RC,)A:: cxp (-JIll)

+ (Q+ RC3)A.1 cxp (J~h) + (Q+ RC3)A~ exp (-(j~h) = 0,

ii. = b (~.: + ~£~) A - (j (~-'- + ~2S) A ,
,: - 0 'tl tl I I tl tl -

Upon solving the equation set (22), the following results for the coefficients A I, A 2,

A 3 and A ~ are obtained:
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(23)

With the substitution of eqn (23) into eqn (18). the final result for the solid displacement
transform, 0(5) becomes

Finally, the dynamic stiffness transfer function is obtained as

AN INFINITE LAYER WITH AN IMPERMEABLE UPPER SURFACE

The boundary conditions for this case in the Laplace Transform domain are given by

(:1: _ h = (P+Q)e+(Q+ R)i; = Po,

da de di;
= Q- +R· = 0,

d: l: _ h d: d:

M de de--- = Q- +R -- = O.
d: l: _ 0 d: dz

(26)

After solving the above equation set and obtaining the coefficient results AI (i = 1,2,3,4),
the final result for o(s) at z = h becomes:

d, +d,C l ]}!- d' (Q+RC,) {£5 2 tanh (e5 2h)(P+Q+RCI+QC.)(Q+RCl )

-£5, tanh (£5,h)(P+Q+RCl +QCl )(Q+RC,)}. (27)

Using the above displacement result, the transfer function for this case is

K(s) = {<5 2 tanh «(5 2h)(P+Q+RC. +QC1)(Q+RCl )

-(5, tanh (c>,h)(P+Q+RCl+QCl)(Q+RC,)}! {e5 1e5 2 tanh (£5 l h) tanh (e5 2h)

x [d. +:2
C

• (Q+RCl ) _ dl+:2C
J (Q+ RCI)]}' (28)
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Table I, Material propertIes of a
porodastic specimen

P* 5.·F77~"

Q* O.70~<;{J7

R* O.~75503,,* 930056..
p~, 3701S53E·9
p~, 1133610E·<)
p~, -O,S75100E·9

THE COMPLEX DY:-:A~lIC STIFFi"ESS !T~CTIO:-';

If a transfer function of a system is given in the Laplace domain. the frequency domain
results can be obtained simply by changing the Laplace Transform parameter to iw_ where
w is a frequency parameter. The dynamic stiffness transfer function K(s) is then transfonm:d
into a complex function of frequency, K(iw). which is called the complex dynamic stifrness
function.

The complex dynamic stiffness function K(i(l)) may be represented in terms of its real
and imaginary parts as K = K' + iK" or K = K' ( I + hJ) where 'I is the loss tangent. K" is
the lost stiffness and K' is the dynamic stiffness. K" and 'I are measures ofenergy dissipation
in the system.

Bcfore evaluating thc complcx dynamic stiffncss function in the frcqucncy domain. the
parameters appearing in K(iU)) are first non-dimcnsionalized in the following manner:

_. -
- - Ii'

p,/Ii 'Sj~
I ,· -,,- tV (i./=1.2).

where (tJo is an arhitrary constant. Since results of this study arc to he compan:d with results
presented by Wijesinghe and Kingshury (llJ7lJ), poroelastic material prop..:rties used by
those authors arc employed in this study and shown in dimensionless form in Table I.t
These data represent the estimated properties for tht: compact bOllt: hut are otlll.:rwise
arhitrarily chosen.

EFFECTS OF SURFACE !'ERMEABILITY

The dimensionless dynamic stiffness, K', and the loss tangent. '/' of the inlinite poro
elastic slab with permeable and impermeable surfuces with the properties of Tuble I arc
shown in Figs I and 2, respectively.

For the cusc of the impermeable upper surfal.·e. then: is no n:lativc motion hetween the
lluid und solid phases so the entire poroelastk material bt:haves as an elastic solid. The
stiffness remuins constant and the loss constant remains zero below the first resonant
frequency of the layer. In the case of the permeable surface, on the other hand. the stiffness
is less at low frequencies but then increases to reach that of the il1lpermeahle surfa<:e <:ase
at high frequencies. At very low frequencies. the entire stiffness of the slab is provided by
the solid phase alone. while at very high frequencies there is little relative motion of the
lluid with respect to the solid. It is in the intermediate frequency range that the energy
dissipated by the lluid now relative to the solid skeleton hecoll1es maximum resulting in a
m,lximum in the loss tangent as shown in Fig. 2. The frequel1l:y at whi<:h the loss tangent
is maximum will be denoted as the "critical" frequency. (I)", in this p'lper.

t;'*=1.49xlO" Ib in ' . .\1=0.9xlO" Ib in". R=0.::!4Rxto'· Ih in '. Q=Il.6.~X(IO' Ih in
A=3.13xIO"lbin-'.,p=O.l-t.h=::!.54xlO"lbsin'".h to 'mantIs" Is 'arcassllll1<:d,
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THE DIMENSIONLESS DYNAMIC STIFFNESS
AN INFINITE POROELASTIC SlAB

•
- - - - - - - - ~-.=---=--=--------

Ul::·1--c:
~

~_ -:::-:: &.~=J1'~:MI1~i:CI
fIl'

~oS,:
tU
c:
>Q::,

71----..............,........--...............-.................................~......-........"........................
10" 10" 10 -. 1 10 10' 10' 10' 10'

Dimensionless Frequency

Fig. I. The dimensionless dynamic stiffness for an infinite poroelastic slab.

COMPARISON OF DYNAMIC RESULTS AND QUASI-STATIC RESULTS

The range of applicability of the quasi-static and dissipationless dynamic theories to
poroelastic structural response analysis is next explored. Results for the dimensionless
complex dynamic stiffness function obtained from the present study, eqn (24), and the results
for complex modulus obtained from Wijesinghe and Kingsbury's quasi-static analysis for
an infinite poroelastic slab with a permeable upper surface are compared in Fig. 3. Figure
3 shows that the results of the two are essentially identical in the range of frequencies below
the fundamental resonant frequency of the slab. The dimensionless dynamic stiffness J::
starts at a value of skeleton stiffness of p~IR* = 3.654; and the loss tangent '1 starts at a
\ialue of zero. This shows that at very low frequency range, the system's behavior is
dominated by the stiffness of the solid skeleton. As frequency increases both K: and '1
increase as well. When the loss tangent is maximum (w = wJ, the rate of increase of K' is
also greatest. At higher frequencies, since relative motion of fluid and solid decreases, the
loss tangent bt."Comes small and K' tends to a high but constant value. The final value of the
storage modulus obtained from Wijesinghe and Kingsbury's quasi-static investigation is

o

"..
LOSS TANGENT

AN INFINITE POROElASTIC SlAB

- - IJIPEIUl&AIIU IIPPClI 3tlR',\CI
- PIIlIlUIIU: UPPER 3tl1U",\CI

~------------------~-~-~---------

~+-...............,........--...............-...........,..............................~.......,....,..,............
10 -. 10 -. 10 -, 1 10 10' 10' 10' 10'

Dimensionless Frequency

Fig. 2. The loss tangent of an infinite poroelastic slah.
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THE DIMENSIONLESS COMPLEX DYNAMIC STIFFNESS
DYNAMIC RESULTS & QUASI-STATIC RESULTS

Fig. J. The dimensionless comple:t dynamic stiffness-dynamic results and quasi-static results.

which is very close to that predicted by the complete theory. For example, at w· = 1800,
the value of R: obtained from the present study is 7.154. The results of the two analyses
start to diverge significantly at w· = IO~. and above this frequency, the resonant response
of the dynamic stiffness is predicted only by the complete theory.

DYNAMIC RESULTS AND REDUCED DYNAMIC RESlJLTS

In the higher frequency range. the resonance phenomena in poroclastic materials
observed by Wijesinghe and Kingsbury in their "dynamic" (reduced dynamic) case can be
obtained directly from the complete theory n:sults by setting the dissipation coetlicient h
equal to zero. Figure 4 compan:s the results for the complete dynumie theory with the
results for the reduced dynamic case which excluded the dissipation terms. It is observed
that the complete theory predicts a higher fundamental resonant frequency us well as a
higher stiffness than th'lt of the reduced dynamic case. For this particular case, the resonant
frequency predicted by the complete theory is ncar the fourth resonance of the reduced
theory.

It may be concluded that lack ofdissipation terms in the equation results in inaccurate
prediction of all resonant frequencies including the lowest.

THE DIMENSIONLESS COMPLEX DYNAMIC STIFFNESS
DYNAMIC RESULTS .\( REDUCED DYNAMIC RESULTS

tJ)~
(II

Q)

c
... 0.....
-'en (tJJl.J..'.'SUIO)

<;; 0 (1.OU,J.'4NIQ)

6
0

~ ..
c: J - - Dyn. surrn... - 01'1\. Rualls
>. - Dtn. Stirlne-.. - Reduct.'d Dyn. Ru••n_
Q~

I

Dimensionless Frequency

Fig. 4. The dimensionless complc:t dynamic stifTness-dynamic results and reduced dynamic results.
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Fig. 5. Effects of dissipation coefficient be on the dimensionless complex dynamic stiffness.
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EFFECTS OF be AND "r, ON A DIMENSIONLESS COMPLEX DYNAMIC STIFFNESS FUNCTION

The influences of the dimensionless coupling apparent mass, pT2' and of the dimen
sionless dissipation, h*. on a dimensionless complex dynamic stiffness function are next
examined for the case of a slab with a permeable upper surface.

Figure 5 shows results for the influence of h* on K(iw*). rt is observed that the critical
frequency, w:. increases as the dissipation, b*, decreases. When the dissipation term is
neglected (h* = 0), the viscous interactions between the fluid and the solid disappear as
well. The loss tangcnt then approaches zcro, and the dynamic stiffness of the poroelastic
material depends solely on thc stiffncss of the skeleton (pr; R*).

For non-zero valucs of "*, the valuc of We decrcascs as b* increases, but the maximum
value of the loss tangent is essentially independent of h*. This is in agreement with the
findings ofOk uno and Kingsbury (1989) who showed that the maximum value of it depends
only on thc comprcssibilities of the poroelastic matcrial constituents.

Finally, thc influcncc 01" thc coupling density, pT2' on the amplitude of the maximum
dynamic stiffness, K:na ,. and the amplitude of the maximum loss tangent, '1m... is explored
in Fig. 6. When thc absolute value of pT2 increases from 0 to I.J 336 x 10 - 9 (P!2), then to
3.7185 x 10 - 9 (pT d. the amplitudes of K~a. and '1m.. increase accordingly.

These effects are very small in the low frequency region as shown in the lower part of
Fig. 6. As the frequency approaches the layer resonant frequency. however, it is seen that
the value of P 12 has a very pronounced effect on the dynamic stiffness. This implies that
the as yet unresolved problem of evaluating P12 must be attacked if BioI's equations are to
be used to predict resonant response.

ErrECT3 0' pO" ON TilE DI.,£H3IONLE:SS COMPLEX DTNAIIIC :mrrNE55

~~
--. P •• • -l.l330101-8---Pit. O.

";'00 1300 11100 2300 21100

_- --- - .. -- - _.. ---
." -- - .. -

5.0~7~2E-002

-'-

5.11517521-002

Dimensiontess Frequency

Fig. 6. Effccts of I'r: on thc dimcnsionlcss complclt dynamic stiffness.
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CONCLUSIONS

The complex dynamic stiffness of a poroelastic layer has been determined by solving
Bioes complete equations of poroelasticity for the case of an impulsive pressure applied to
a surface. The resulting expression is used to study the effects of neglecting either inertia or
dissipation terms in the complete theory as well as the effects of surface permeability.
dissipation coefficient and coupling density on layer dynamic stiffness and energy
dissipation.

It was found that the quasi static theory accurately predicts layer response below the
first structural resonant frequency while the reduced dynamic theory does not accurately
predict the layer resonant frequencies.

If both surfaces are impermeable, the layer behaves as a homogeneous solid with
constant stiffness and zero damping below the resonant frequency. If. on the other hand.
flow through a surface is permitted. there is a frequency range in which the storage constant
increases and the loss tangent achieves a maximum value.

The frequency of the maximum value of the loss tangent is dependent upon the value
of the dissipation coefficient but the maximum value itself is independent of b.

Finally, it is shown that although the coupling density coefficient, PI> has little dfcct
on the dynamic stilTness at low frequencies its value must be chosen corn:ctly in order to
accurately predict layer response at frequencies approaching the layer rcsonant frcquency.
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